Nanoparticles in food and non-food Recent methods and measurements

Ruud Peters, Stefan Weigel, Hans Marvin and Hans Bouwmeester RIKILT – Institute of Food Safety, Wageningen, The Netherlands ruudj.peters@wur.nl, +31 317 486 348

RIKILT and nanoparticle analysis

- Method development for the Dutch Food Authority
- Exposure to, and toxicity of nanoparticles
- Participating in EUprojects and proposals;
 e.g. NanoLyse

Nanoparticles in food and non-food applications

Methods and measurements

- Hydrodynamic chromatography
 - Food, Non-food, Tox studies
- Single particle ICPMS
 - Food supplements, Tox studies
- Electron microscopy
 - Non-food, Shape, Agglomeration, Confirmation

- Separation based on exclusion from the wall
- Larger particles elute earlier
- No chemical interaction

Synthetic amorphous silica (SAS, food additive E551) in powdered food products

Product	Total silica content g/kg	Nano-silica content g/kg	
Coffee creamer	5.1	1.0	
Roasted vegetable rub	4.9	0.6	
Lasagna sauce	5.4	0.3	Si, m/z=28 Si ze size size 1-20 mm
Instant soup	0.6	0.2	

• *In vitro* digestion:

Simulation of oral, stomach and intestinal digestion based on artificial human digestive juices to assess the changes and presence of digested nanoparticles

 Fate of nano-silica following digestion

 Separation of organic nanoparticles

• Single particle ICPMS, a screening tool for metal and metaloxide nanoparticles

 Conventional ICPMS (right) results in a continuous signal since the metal is distributed homogeneously in the sample as ions

•Single particle ICPMS (left) results in a discontinuous signal since the metal is distributed heterogeneously in the sample as nanoparticles.

- The size of the particles determines the intensity of the transient signals (peak height)
- The particle concentration determines the frequency of the transient signals (number of peaks min⁻¹)
- Choosing a good dwell time is critical

Size distribution of silver nanoparticles in a suspension at 25 ng/L.

The manufacturer states a particle size of 67 ± 17 nm.

- Analysis of:
 - "Meso Gold", a food supplement
- Method:
 - Dilute 500.000 times
- Result:
 - Au, 24 nm, 14 ng/L (7 ppm prior to dilution): manufacturer states ca. 30 nm, 10 ppm

Scanning electron microscopy

TiO₂ particles in a facial cream

Scanning electron microscopy

TiO₂ particles in a facial cream are coated with an organic silicium component, probably PDMS

In vitro digestion model

- Silver (Ag) nanoparticles (60 nm) in different concentrations in digestion matrix consisting of proteins, sugars and fats.
- Samples simply diluted and directly analyzed with single particle ICPMS.

- In vitro digestion model
 - n-Ag added in concentrations of 5, 10 and 25 mg/L
 - Mass concentrations of n-Ag decreases during digestion
 - Particle size of n-Ag increases during digestion
 - Less particles following digestion

Scanning electron microscopy

Exposure study using sp-ICPMS

- Pilot study with rats to examine the potential of AgNPs to cross the intestinal wall
 - Rats orally exposed to <20 nm and 50-60 nm AgNPs for 3 days.
 - Exposure dose 500 mg/kg bw via drinking water and custard
 - Blood and liver samples analysed using sp-ICPMS to determine bioavailability of AgNPs

Exposure study using sp-ICPMS

• Results indicate presence of AgNPs in liver (ca. 2 mg/kg)

Summary

- HDC-ICPMS is a useful technique for the determination of nanoparticles in products and toxicity studies. However, it does requires sample preparation.
- Single particle ICPMS is a fast (screening) method for the determination of nanoparticles. However, it allows only single-element detection and assumptions regarding shape are made.
- Electron microscopy is very useful for confirmation and for solving questions about shape and agglomeration.
- A more generic sample preparation technique is urgently needed.

Questions ?

